LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ti-doped α-Fe2O3 nanorods with controllable morphology by carbon layer coating for enhanced photoelectrochemical water oxidation.

Photo from wikipedia

Ti-doped α-Fe2O3 nanorods (NRs) with carbon layer coating were fabricated for photoelectrochemical (PEC) water oxidation. The α-Fe2O3 NRs were grown on the surface of a Ti foil substrate by hydrothermal… Click to show full abstract

Ti-doped α-Fe2O3 nanorods (NRs) with carbon layer coating were fabricated for photoelectrochemical (PEC) water oxidation. The α-Fe2O3 NRs were grown on the surface of a Ti foil substrate by hydrothermal synthesis. Ti4+ was diffused from the Ti substrate and doped into the α-Fe2O3 NRs by sintering at 800 °C. The presence of Fe2+ in the α-Fe2O3 lattice was achieved by annealing the NRs in a lack of oxygen atmosphere, e.g. in argon. The co-existence of Ti4+ and Fe2+ results in significant enhancement of the PEC performance compared with the hematite NRs obtained by annealing in air, showing the absence of Fe2+. The carbon layer coating was conducted by the carbonization of glucose. Impressively, the coated carbon layer can not only facilitate the charge transfer of the photogenerated carriers but also effectively restrain the structural aggregation of the NRs upon high temperature sintering. The carbon layer coated NRs exhibited 1.2 times higher photocurrent density than the uncoated NRs due to the reduced charge recombination and well-distinct NR structures.

Keywords: fe2o3 nanorods; carbon; layer coating; carbon layer; doped fe2o3

Journal Title: Dalton transactions
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.