LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spectroscopic and reactivity differences in metal complexes derived from sulfur containing Triphos homologs.

Photo by trnavskauni from unsplash

Herein, we report a simplified method for the synthesis of Triphos homologs H3CC(CH2X)n(CH2Y)3-n (X = SPh, Y = PPh2, n = 0-3). The multidentate compounds were tested for their potential… Click to show full abstract

Herein, we report a simplified method for the synthesis of Triphos homologs H3CC(CH2X)n(CH2Y)3-n (X = SPh, Y = PPh2, n = 0-3). The multidentate compounds were tested for their potential to coordinate metals such as Ni, Fe, and Mo under the same experimental conditions. Cyclic voltammetry, spectroelectrochemical IR investigations as well as DFT calculations were used to examine the electronic alterations in a series of [{H3CC(CH2X)n(CH2Y)3-n}Mo(CO)3] complexes and to evaluate their potential to open coordination sites or to release CO upon oxidation or in the presence of different solvents. In addition, we demonstrate that the catalytic hydrosilylation of N,N-dimethylbenzamide to N,N-dimethylbenzylamine is influenced by the applied tripodal ligand. Our investigations show the high potential of such manipulations to selectively alter the dynamics of the binding properties of Triphos-metal complexes and their reactivity.

Keywords: reactivity differences; metal complexes; spectroscopic reactivity; triphos homologs

Journal Title: Dalton transactions
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.