A novel 3D polyoxometalate metal organic framework (POMOF), [{CuCu (H2O)5(pzc)10(pz)6}{P2W18O62}2]·4H2O (1) (Hpzc = pyrazine-2-carboxylic acid, pz = pyrazine) has been hydrothermally synthesized and characterized by IR, TG, XRD, UV-vis and… Click to show full abstract
A novel 3D polyoxometalate metal organic framework (POMOF), [{CuCu (H2O)5(pzc)10(pz)6}{P2W18O62}2]·4H2O (1) (Hpzc = pyrazine-2-carboxylic acid, pz = pyrazine) has been hydrothermally synthesized and characterized by IR, TG, XRD, UV-vis and elemental analyses. In compound 1, the pzc and pz ligands are generated through in situ transformation from pyrazine-2,3-dicarboxylic acid (pzdc) to remove one or two CO2 molecules. The ligands with four coordination modes connect nine crystallographically independent Cu atoms to form a super-big circle unit. Each ring unit is connected to the adjacent six rings via an edge-sharing way to form a 2-D Cu/pz/pzc MOF layer, which is further extended along two spatial directions by two kinds of insert modes to generate an interpenetrating and staggered 3-D metal organic network. The {P2W18} clusters as nine-node inorganic guest molecules are grafted on the Cu/pz/pzc framework forming a complex 3D POMOF with a new topology {4·6·83·10}2 {4·6·8}2 {4·62·82·10}2{4·63·82}2{4·85}2{42·62·82}2{42·63·8}{43·67·813·1010·123}2 {4}6{6·82}2{62·8}2 {64·8·10}{6}2{8}4. Additionally, compound 1 exhibits good electrocatalytic activity for the reduction of H2O2 and effective photocatalytic degradation ability for three azo dyes under UV irradiation.
               
Click one of the above tabs to view related content.