LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and photoelectrocatalytic activity of In2O3 hollow microspheres via a bio-template route using yeast templates.

Photo by nci from unsplash

Indium oxide (In2O3) hollow microspheres were prepared using yeast as a bio-template with the aid of a precipitation method. The yeast provided a solid frame for the deposition of In(OH)3… Click to show full abstract

Indium oxide (In2O3) hollow microspheres were prepared using yeast as a bio-template with the aid of a precipitation method. The yeast provided a solid frame for the deposition of In(OH)3 to form the precursor. The resulting In2O3 hollow microspheres were obtained by calcining the precursor at 650 °C. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption isotherms and UV-Vis diffuse reflectance spectroscopy. The results showed that the diameter of the In2O3 hollow microspheres was about 2.0-3.0 μm and the spherical shells were composed of In2O3 nanoparticles with a size of ∼20 nm. The BET specific surface area of the sample was 19.23 m2 g-1. The photoelectrocatalytic test results showed that the photoelectrocatalytic degradation efficiency of methylene blue (MB) using In2O3 hollow microspheres as catalysts under visible light irradiation and a certain voltage could reach above 95% after 4 hours, much higher than that of only photodegradation. The enhanced photoelectrocatalytic activity could be attributed to the hydroxyl radicals HO˙ produced by the light irradiation reaction process which could oxidize the electron donors and were beneficial to reducing the recombination of electrons and holes.

Keywords: hollow microspheres; microscopy; in2o3 hollow; using yeast; spectroscopy

Journal Title: Dalton transactions
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.