Cation doped Zn2GeO4 materials have been intensively explored owing to their excellent performance in photocatalysts, optoelectronic devices and white light-emitting diodes. However, the luminescence process and thermal quenching arising during… Click to show full abstract
Cation doped Zn2GeO4 materials have been intensively explored owing to their excellent performance in photocatalysts, optoelectronic devices and white light-emitting diodes. However, the luminescence process and thermal quenching arising during the optical excitation of these materials are yet to be clarified. The pure and 2% Mn2+ doped Zn2GeO4 phosphors were prepared via the high temperature solid state reaction. The phosphors were characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy and afterglow decay curves. The thermal stability and quenching of Mn2+ luminescence were explained by the temperature dependence of photoluminescence spectroscopy and the configuration coordinate diagram. The thermal quenching of Mn2+ luminescence is mainly due to the delocalization of excited electrons from the excited state to the ionized state. Two kinds of origination of the O 1s peak were revealed by X-ray photoelectron spectroscopy. A model is constructed to interpret all the photoluminescence and long persistent luminescence of the Mn2+ doped Zn2GeO4. This may contribute to the understanding and optimization of luminescence properties for other Mn2+ doped inorganic phosphors.
               
Click one of the above tabs to view related content.