LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of a mesocellular siliceous foam supported lanthanide-sensitive polymer for the selective adsorption of lanthanides.

Photo from wikipedia

A ship in bottle nanocomposite was fabricated as a novel adsorbent for lanthanides by immobilizing a lanthanide-sensitive polymer into mesocellular siliceous foam (MCF). The MCF was used as a novel… Click to show full abstract

A ship in bottle nanocomposite was fabricated as a novel adsorbent for lanthanides by immobilizing a lanthanide-sensitive polymer into mesocellular siliceous foam (MCF). The MCF was used as a novel carrier for immobilization of the polymer, and the polymer was synthesized via in situ ring-opening polymerization of 2-methyl-2-oxazoline (MOL) and divinylbenzene (DVB) in the presence of MCFs. The substantially physically modified MCF-based composite exhibited superior adsorptivity and selectivity to lanthanides due to its exceptional properties, which was employed for lanthanide adsorption from aqueous solution by a facile solid-liquid separation procedure. The adsorption of lanthanides by the composite was systematically studied including adsorption parameter investigation and adsorption mechanism evaluation. The adsorption isotherms and kinetics were also investigated and proved to follow the Langmuir model and the pseudo-second-order model. The adsorption thermodynamics study indicated that the adsorption process was thermodynamically favorable, endothermic and spontaneous. The prepared inorganic-organic hybrid composite has superior selectivity and specificity to lanthanides, which can be used for lanthanide enrichment and separation of lanthanides from actinides.

Keywords: adsorption; sensitive polymer; lanthanide sensitive; polymer; siliceous foam; mesocellular siliceous

Journal Title: Dalton transactions
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.