LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temperature- and excitation wavelength-dependent emission in a manganese(ii) complex.

Photo from wikipedia

A mononuclear manganese(ii) complex with a chelating 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine ligand (L), [MnL2Cl2]·H2O, shows intriguing excitation wavelength-dependent emission. Depending on the excitation wavelength, the complex demonstrates three emission bands with the maxima… Click to show full abstract

A mononuclear manganese(ii) complex with a chelating 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine ligand (L), [MnL2Cl2]·H2O, shows intriguing excitation wavelength-dependent emission. Depending on the excitation wavelength, the complex demonstrates three emission bands with the maxima at 380 nm, 440 nm and 495 nm. The 380 nm and 440 nm emissions originate from the π → π* and n → π* ligand-centered transitions. The long-wave 495 nm emission with microsecond lifetimes is related to the d-d transitions and/or metal-to-ligand and halogen-to-ligand charge transfer. The emission behavior of this complex is strongly temperature-dependent: upon cooling from 300 K down to 77 K, the intensity of emission considerably increases. The enhancement of the luminescence upon cooling is accompanied by the appearance of the vibrational structure. This complex is the first example of manganese(ii) complexes demonstrating excitation wavelength-dependent emission.

Keywords: excitation wavelength; dependent emission; wavelength dependent; emission

Journal Title: Dalton transactions
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.