LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrolytic hydrogenation of chitin to amino sugar alcohol

Photo by louishansel from unsplash

Chitin is the second most abundant biomass and characteristically contains nitrogen atoms in its monomer units. These favourable features promote chitin to be a potential resource for renewable organonitrogen compounds.… Click to show full abstract

Chitin is the second most abundant biomass and characteristically contains nitrogen atoms in its monomer units. These favourable features promote chitin to be a potential resource for renewable organonitrogen compounds. 2-Acetamido-2-deoxysorbitol (ADS) is an attractive target in the derivatives of chitin, but the conversion of chitin to ADS has not been reported so far. In this work, we demonstrate the catalytic conversion of chitin to ADS using mechanocatalysis in the presence of H2SO4 and subsequent hydrolytic hydrogenation by H2SO4 and Ru/TiO2 without any purification process. Our study clarified that the yield of ADS is strongly influenced by the reaction temperature and pH. The hydrolysis favourably proceeds at high temperature and low pH (2.0), but the hydrogenation needs a low temperature and a specific pH of 3–4 to achieve high selectivity. Specifically, in the hydrogenation step, an acid causes various side-reactions of amide and hemiacetal groups especially in the presence of a Ru catalyst, whereas even a small amount of base drastically accelerates the retro-aldol reaction to form erythritol and N-acetylethanolamine. Therefore, a one-pot but two-step reaction is necessary to optimise both the hydrolysis and hydrogenation steps and maximise the overall yield of ADS up to 52%.

Keywords: chitin amino; hydrogenation; hydrolytic hydrogenation; chitin; amino sugar; hydrogenation chitin

Journal Title: Green Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.