LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile and sustainable synthesis of sodium lignosulfonate derived hierarchical porous carbons for supercapacitors with high volumetric energy densities

Photo by mbrunacr from unsplash

Interconnected hierarchical porous carbon was successfully prepared by direct carbonization of industrial waste sodium lignosulfonate without additional templating and activation agents. The as-prepared carbon sample shows a moderate specific surface… Click to show full abstract

Interconnected hierarchical porous carbon was successfully prepared by direct carbonization of industrial waste sodium lignosulfonate without additional templating and activation agents. The as-prepared carbon sample shows a moderate specific surface area of 903 m2 g−1 and high contents of 8.11 at% oxygen and 1.76 at% nitrogen, which could improve the electrolyte-affinitive surface area in an aqueous electrolyte. When used as electrode materials for symmetric supercapacitors in 7 M KOH electrolytes, the as-synthesized carbon sample exhibits a significantly high gravimetric capacitance of 247 F g−1, a volumetric capacitance of 240 F cm−3, and an areal capacitance of 27.4 μF cm−2 at a current density of 0.05 A g−1. Moreover, a superior energy density of 8.4 W h L−1 (at 13.9 W L−1) and a power density of 5573.1 W L−1 (at 3.5 W h L−1), as well as a remarkable cycling stability after 20 000 cycles at two different current densities were achieved for the assembled supercapacitors.

Keywords: energy; sodium lignosulfonate; facile sustainable; hierarchical porous

Journal Title: Green Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.