LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The in situ transformation of the co-product formaldehyde in the reversible hydrolysis of 1,3-dixoane to obtain 1,3-propanediol efficiently

Photo by rachitank from unsplash

Herein, a strategy is developed for efficient production of l,3-propanediol via the hydrolysis of 1,3-dioxane by the in situ transformation of the co-product formaldehyde (HCHO) in the presence of Eu(OH)3.… Click to show full abstract

Herein, a strategy is developed for efficient production of l,3-propanediol via the hydrolysis of 1,3-dioxane by the in situ transformation of the co-product formaldehyde (HCHO) in the presence of Eu(OH)3. The reversible hydrolysis reaction is promoted to yield 98% conversion and 99% 1,3-propanediol selectivity. Furthermore, HCHO is converted to formic acid (HCOOH) which could act as an acidic catalyst in the hydrolysis of 1,3-dioxane. The combination of FT-IR and control experiments demonstrates that HCOOH is generated via the hydrolysis of formate species which formed on the surface of Eu(OH)3.

Keywords: transformation product; situ transformation; reversible hydrolysis; hydrolysis; product formaldehyde

Journal Title: Green Chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.