LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A miniature liquid electrode discharge-optical emission spectrometric system integrating microelectrodialysis for potassium screening in serum

Photo from wikipedia

An automated microelectrodialysis (μED)-liquid electrode discharge (LED)-optical emission spectrometric (OES) system was developed with the aim of potassium screening in serum, especially for a micro-sample volume. Potassium in serum was… Click to show full abstract

An automated microelectrodialysis (μED)-liquid electrode discharge (LED)-optical emission spectrometric (OES) system was developed with the aim of potassium screening in serum, especially for a micro-sample volume. Potassium in serum was on-line extracted via a μED process and subsequently introduced into the LED microplasma to perform the optical emission detection at λem 766.5 nm. The optical emission intensity of potassium was measured using a charge-coupled device (CCD) spectrometer for quantitative analysis. A few important parameters governing the extraction of potassium by μED and its detection by LED-OES were investigated. The present system provides an excellent capability for eliminating matrix interference with a protein removal efficiency of >99%, by consuming a serum sample volume of 20 μL for each analysis. The entire analytical process, including sample introduction, pretreatment and detection, takes no more than 90 s. A detection limit of 0.6 mg L−1 was obtained along with a linear range of 2–70 mg L−1 and a RSD value of 4.8% at 5 mg L−1 potassium. The practical applicability of the μED-LED-OES system was demonstrated by the determination of potassium in serum certified reference materials and real human serum samples. The present system offers a potential strategy for screening the variation of the concentration of potassium in patients.

Keywords: potassium; system; optical emission; serum; liquid electrode

Journal Title: Journal of Analytical Atomic Spectrometry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.