LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Can dual-ligand targeting enhance cellular uptake of nanoparticles?

Photo from wikipedia

Dual ligand targeting to different types of over-expressed receptors on cell surfaces is a promising strategy in nanomedicine. Here, by using dissipative particle dynamics simulations, the effect of the surface… Click to show full abstract

Dual ligand targeting to different types of over-expressed receptors on cell surfaces is a promising strategy in nanomedicine. Here, by using dissipative particle dynamics simulations, the effect of the surface distribution and physicochemical properties of dual ligands on the cellular uptake of nanoparticles is systematically studied. It is found that the spontaneous rearrangement of dual ligands (from random to patterned distribution) on the nanoparticle surface can enhance the cellular uptake of nanoparticles. While the short length of ligands may restrict the ligand rearrangement, nanoparticles coated with short dual ligands cannot be fully wrapped by cell membranes unless the dual ligands are initially separated on the nanoparticle surface. Besides, when there exists a length mismatch or non-specific interaction between the dual ligands, dual-ligand targeting cannot enhance the uptake efficiency, either. Further, we also provide the design guidelines for surface decoration, and find that the Janus nanoparticle can make the most of dual-ligand targeting. These results can help understand how to better use dual ligands to achieve efficient cellular uptake, which may provide significant insights into the optimal design of future nanomaterials in drug delivery.

Keywords: ligand targeting; dual ligand; uptake nanoparticles; dual ligands; ligand; cellular uptake

Journal Title: Nanoscale
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.