LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering.

Photo from wikipedia

Intense electric fields at the nanoscale are essential for single molecule surface-enhanced Raman scattering (SERS) detection. Such fields can be achieved in plasmonic nano-gaps between nanoparticles and metal films through… Click to show full abstract

Intense electric fields at the nanoscale are essential for single molecule surface-enhanced Raman scattering (SERS) detection. Such fields can be achieved in plasmonic nano-gaps between nanoparticles and metal films through hybridization of surface plasmons. The nano-gaps could be formed and dynamically controlled by using plasmonic tweezers; however, the aggregation of particles in the plasmonic field degrades each particle's enhancement and spoils the nanosized-spatial resolution. Here, dual-plasmonic tweezers are proposed and demonstrated to accurately control the number of nano-gaps and enhancement by tailoring a crater-shaped potential well in the nano-trap system. As the electric field in the nano-gap is intense, SERS spectral signatures of a single molecular level are probed simultaneously. These advantages point towards the implementation of enhanced Raman spectra, and broad applications in optical molecular detection.

Keywords: surface enhanced; single molecule; molecule surface; enhanced raman; nano

Journal Title: Nanoscale
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.