LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Engineering a nanotubular mesoporous cobalt phosphide electrocatalyst by the Kirkendall effect towards highly efficient hydrogen evolution reactions.

Photo by cooper_baumgartner from unsplash

Tailoring the size and controlling the morphology of particular nano-architectures are considered as two promising strategies to improve the catalytic performance of metal nanocrystals towards hydrogen evolution reactions (HERs). Herein,… Click to show full abstract

Tailoring the size and controlling the morphology of particular nano-architectures are considered as two promising strategies to improve the catalytic performance of metal nanocrystals towards hydrogen evolution reactions (HERs). Herein, mesoporous cobalt phosphide nanotubes (CoP-NTs) with a three-dimensional network structure have been obtained through a facile and efficient electrospinning technique combined with thermal stabilization and phosphorization treatments. The thermal stabilization process has been demonstrated to play a key role in the morphological tailoring of Co3O4 nanotubes (Co3O4-NTs). As a result, the CoP-NTs show one-dimensional hollow tubular architecture instead of forming a worm-like tubular CoP structure (W-CoP-NTs) or severely aggregated CoP powder (CoP-NPs) which originate from the Co3O4 nanotubes without thermal stabilization treatment and Co3O4 nanoparticles, respectively. Satisfyingly, under an optimized phosphorization degree, the CoP-NT electrode exhibits a low onset overpotential of 53 mV with a low Tafel slope of 50 mV dec-1 during the HER process. Furthermore, the CoP-NT electrode is capable of driving a large cathodic current density of 10 mA cm-2 at an overpotential of 152 mV, which is much lower than those of its contrast samples, i.e. CoP-NPs (211 mV) and W-CoP-NTs (230 mV). Therefore, this work provides a feasible and general strategy for constructing three-dimensionally organized mesoporous non-noble metal phosphide nanotubes as promising alternative high-performance electrocatalysts for the commercial platinum ones.

Keywords: mesoporous cobalt; cop; hydrogen evolution; cop nts; evolution reactions; cobalt phosphide

Journal Title: Nanoscale
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.