LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Iodine induced 1-D lamellar self assembly in organic ionic crystals for solid state dye sensitized solar cells.

Photo from wikipedia

A novel saturated heterocyclic organic ionic crystal, piperidinium iodide (PiHI), is synthesized by a facile route and applied as a solid electrolyte in Dye Sensitized Solar Cells (ss-DSSCs). Upon addition… Click to show full abstract

A novel saturated heterocyclic organic ionic crystal, piperidinium iodide (PiHI), is synthesized by a facile route and applied as a solid electrolyte in Dye Sensitized Solar Cells (ss-DSSCs). Upon addition of a small quantity of iodine, PiHI self-assembles into a 1D lamellar micro crystalline structure that shows anisotropic conductivity. The two-component PiHI was characterized by using electrochemical impedance spectroscopy, cyclic voltammetry, steady state voltammetry, FT-IR, and Raman spectroscopy. Wide angle X-ray diffraction (XRD) measurement confirms the presence of long range 1D lamellar channels that pave the way for the diffusion of the redox couple I-/I3- and exhibit high anisotropic conductivity. The ionic conductivity of 1D PiHI (with I2) aligned perpendicular to the electrode, σ⊥ (15.46 mS cm-1), is 1.5 times higher than that aligned parallel to the electrode σ∥ = 10.32 mS cm-1. The ss-DSSC devices with these self-assembled ordered ionic crystals with a carbazole based sensitizer (SK1) achieved a power conversion efficiency (PCE) of 4.2% and 5.2% for ∥al and ⊥ar arrangement, respectively. The reported PCEs are better than that obtained from a classical liquid electrolyte with SK1 sensitizers. The electron kinetics at various interfaces of ss-DSSC devices was evaluated using Electrochemical Impedance Spectroscopy (EIS) measurements. The presence of a saturated cyclic structure promotes close packing through H-bonding and electrostatic interactions, which make ss-DSSC devices more stable up to 600 h under illumination of 1 sun.

Keywords: dye sensitized; sensitized solar; organic ionic; ionic crystals; spectroscopy; solar cells

Journal Title: Nanoscale
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.