LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reverse-bias-driven whispering gallery mode lasing from individual ZnO microwire/p-Si heterojunction.

Photo from wikipedia

In this paper, electrically driven whispering gallery mode (WGM) lasing was observed from ZnO single microwire (SMW)/p-Si heterojunctions operated at reverse bias. Current-voltage curve exhibits a non-ideal rectification characteristic with… Click to show full abstract

In this paper, electrically driven whispering gallery mode (WGM) lasing was observed from ZnO single microwire (SMW)/p-Si heterojunctions operated at reverse bias. Current-voltage curve exhibits a non-ideal rectification characteristic with a turn-on voltage of about 0.8 V. When the reverse current of 20 mA was applied, several sharp lasing peaks with FWHM as narrow as ∼2 nm appeared in the spectra, which demonstrated that the gain was now large enough to enable the cavity resonant in ZnO SMW. The resonant process, lasing mode and quality factor (Q) were investigated via experiments and theory. The observed discrete lasing peak positions effectively matched the simulated lasing modes. The carrier transport process and light emission mechanism in heterojunctions are also discussed by energy band theory and interface defect.

Keywords: driven whispering; mode; zno; reverse bias; whispering gallery; gallery mode

Journal Title: Nanoscale
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.