LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facet-dependent photocatalytic decomposition of N2O on the anatase TiO2: a DFT study.

Photo from wikipedia

The photocatalytic N2O dissociation on anatase TiO2 is an attractive reaction and the mechanism of the photocalytic process, the role of excited electrons, and the favorable facet for higher activity… Click to show full abstract

The photocatalytic N2O dissociation on anatase TiO2 is an attractive reaction and the mechanism of the photocalytic process, the role of excited electrons, and the favorable facet for higher activity need a more detailed study at the molecular level. Using DFT + U calculations, we investigate the dissociation process of N2O into N2 with and without photoexcited electrons on anatase TiO2 (001) and (101) facets to unravel such puzzles. The optical absorption properties of TiO2 (001) and (101) facets are compared in combination with electronic analysis. The localization of excited electrons on the two surfaces with the existence of oxygen vacancies is explored. When there is no photo-excitation, on a perfect TiO2 surface, N2O decomposition is difficult due to the inhibitive high reaction energy. In contrast, the reaction energy decreases dramatically in the presence of photoexcited or excess electrons on the TiO2 surface. The reaction energy is related to the electronic state of dissociated O. The more negative charges make O more stable, and accordingly lead to higher exothermic reaction energy. Based on this point, the influence of surface morphology and excited states can be understood. This is the first theoretical study of the photocatalytic process of N2O elimination, which will guide further experimental study and improve its activity.

Keywords: reaction energy; anatase tio2; study

Journal Title: Nanoscale
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.