Antimony sulfide can be used as a promising anode material for lithium ion batteries due to its high theoretical specific capacity derived from sequential conversion and alloying lithium insertion reactions.… Click to show full abstract
Antimony sulfide can be used as a promising anode material for lithium ion batteries due to its high theoretical specific capacity derived from sequential conversion and alloying lithium insertion reactions. However, the volume variation during the lithiation/delithiation process leads to capacity fading and cyclic instability. We report a facile, one-pot hydrothermal strategy to prepare Sb2S3 nanorods wrapped in graphene sheets that are promising anode materials for lithium ion batteries. The graphene sheets serve a dual function: as heterogeneous nucleation centers in the formation process of Sb2S3 nanorods, and as a structural buffer to accommodate the volume variation during the cycling process. The resulting composites exhibit excellent electrochemical performance with a highly reversible specific capacity of ∼910 mA h g-1, cycling at 100 mA g-1, as well as good rate capability and cyclic stability derived from their unique structural features.
               
Click one of the above tabs to view related content.