LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ decoration of stainless steel nanoparticles for synergistic enhancement of α-Ni(OH)2 oxygen evolution reaction catalysis

Photo by davidhellmann from unsplash

Alkaline water-splitting is a promising clean technology for hydrogen production. However, reducing the oxygen evolution reaction (OER) overpotential is critical to the overall process efficiency and economic feasibility. To this… Click to show full abstract

Alkaline water-splitting is a promising clean technology for hydrogen production. However, reducing the oxygen evolution reaction (OER) overpotential is critical to the overall process efficiency and economic feasibility. To this end, we demonstrate novel 3D hierarchical α-Ni(OH)2 nanoparticle decorated stainless steel nanoparticle (SSNP) catalyst deposits on Ni foam substrates. SSNP deposition along with simultaneous in situ Ni(OH)2 decoration of the SSNP is facilitated via a facile single-step electrophoretic deposition (EPD) based co-deposition method. The enhanced OER catalytic activity of α-Ni(OH)2 owing to the synergistic SSNP support, which possibly serves as a dopant source to the metal hydroxide, could sustain current densities of 10 and 125 mA cm−2 at overpotentials of 220 and 250 mV respectively, in 1 M KOH. These robust deposits could survive accelerated cycling and prolonged oxygen generation at higher current densities despite the lack of any polymeric binders. In 10 M KOH, a current density of 500 mA cm−2 could be maintained at an overpotential of 450 mV (iR-uncorrected).

Keywords: oxygen; oxygen evolution; stainless steel; evolution reaction; situ decoration

Journal Title: Materials Chemistry Frontiers
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.