LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile synthesis of Fe3O4/MIL-101 nanocomposite as an efficient heterogeneous catalyst for degradation of pollutants in Fenton-like system

Photo by picasso_the_line_art from unsplash

An active Fe3O4/MIL-101 hybrid material was prepared via a simple in situ solvothermal method and characterized as a heterogeneous Fenton-like catalyst for Rhodamine B (RhB) degradation. The Fe3O4/MIL-101 exhibited enhanced… Click to show full abstract

An active Fe3O4/MIL-101 hybrid material was prepared via a simple in situ solvothermal method and characterized as a heterogeneous Fenton-like catalyst for Rhodamine B (RhB) degradation. The Fe3O4/MIL-101 exhibited enhanced catalytic performance for RhB degradation in a neutral solution. Under optimized conditions, almost 100% removal of 10 mg L−1 RhB was achieved in 30 min using 0.5 g L−1 Fe3O4/MIL-101 and 20 mM H2O2 at initial pH 7. The reusability of Fe3O4/MIL-101 was also investigated after four runs. On the basis of the characterization of the catalyst, the results of metal leaching, the effects of radical scavengers, and hydroxyl radical (˙OH) determination, it was concluded that RhB is decomposed mainly by the attack of the hydroxyl radical (˙OH), generated by the reaction of Fe2+ species with H2O2. MIL-101 showed a significant synergistic effect with Fe3O4, in which it played the role of a solid-acid catalyst with Lewis acid sites on its surface, ensuring that a Fenton-like reaction occurred in the neutral solution.

Keywords: degradation; fe3o4 mil; fenton like; catalyst; mil 101

Journal Title: RSC Advances
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.