LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient water oxidation with amorphous transition metal boride catalysts synthesized by chemical reduction of metal nitrate salts at room temperature

Photo from wikipedia

We present a variety of amorphous transition-metal borides prepared at room temperature by a chemical reduction method as highly active catalysts for the oxygen evolution reaction (OER). The amorphous borides… Click to show full abstract

We present a variety of amorphous transition-metal borides prepared at room temperature by a chemical reduction method as highly active catalysts for the oxygen evolution reaction (OER). The amorphous borides exhibit activities much higher than the corresponding crystalline (spinel, layered double hydroxide and perovskite) metal oxides containing the identical metal compositions, which have already been regarded as promising OER catalysts. The amorphous Ni/Fe borides showed the best mass normalized OER current density of 50 A g−1 at an overpotential of 0.35 V, transcending the performance of the state-of-the-art OER catalyst, RuO2. Amorphous transition-metal borides demonstrated extremely high active OER catalytic activity. The outstanding catalytic activity can be attributed to the amorphous structure, the large specific surface areas (above 110 m2 g−1) and the electron-enriched transition metal sites stemming from boron doping. The stoichiometry of the catalysts can be controlled precisely even for the synthesis of quaternary metal boride catalysts, which made it feasible to further optimize the catalytic activity. These results indicated that it is facile to prepare highly active OER catalysts by the one-step chemical reduction process at room temperature.

Keywords: chemical reduction; transition metal; amorphous transition; room temperature; metal

Journal Title: RSC Advances
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.