LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

pH-Responsive wormlike micelles based on microstructural transition in a C22-tailed cationic surfactant–aromatic dibasic acid system

Photo by supratikdeshmukh from unsplash

pH-Responsive wormlike micelles based on microstructural transition, and formed by complexation of N-erucamidopropyl-N,N-dimethylamine (UC22AMPM) and potassium phthalic acid (PPA) at a molar ratio of 2 : 1, were developed and compared with… Click to show full abstract

pH-Responsive wormlike micelles based on microstructural transition, and formed by complexation of N-erucamidopropyl-N,N-dimethylamine (UC22AMPM) and potassium phthalic acid (PPA) at a molar ratio of 2 : 1, were developed and compared with CTAB/PPA at the same molar ratio. Phase behavior, viscoelasticity, and microstructural transitions of solutions were investigated by observing their appearance, rheological characteristics, dynamic light scattering, and 1H NMR measurements. It was found that the phase behavior of UC22AMPM/PPA solutions undergoes transitions from transparent viscoelastic fluid to phase separation with white floaters upon increasing pH. By increasing pH from 2.01 to 6.19, the viscosity of wormlike micelles in the transparent solutions continuously increased and reached ∼1.4 × 106 mPa s at pH 6.19. As pH was adjusted to 7.32, the opalescent solution showed a water-like flowing behaviour and the η0 rapidly declined to ∼1.7 mPa s. The viscosity of the CTAB/PPA solutions had a maximum at pH 2.98 and then decreased with increasing pH. This radical variation in rheological behavior is attributed to the pH dependent hydrophobicity of PPA and ultra-long hydrophobic chain of UC22AMPM. Additionally, dramatic viscosity changes of about 6 magnitudes can be triggered by varying pH without any deterioration for the UC22AMPM/PPA system.

Keywords: responsive wormlike; wormlike micelles; based microstructural; microstructural transition; micelles based

Journal Title: RSC Advances
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.