We have systematically elucidated the electronic and spin dependent behavior of far-edge doped zigzag graphene nanoribbons from a DFT based first principles study. The relative changes in the electronic environment… Click to show full abstract
We have systematically elucidated the electronic and spin dependent behavior of far-edge doped zigzag graphene nanoribbons from a DFT based first principles study. The relative changes in the electronic environment due to an increment in the impurity concentration as well as the size of the hexagonal carbon network have been thoroughly assayed. Although the substitutional doping is most favorable at the edges of the nanoribbons, our DFT simulations envision that far-edge doping also induced some tunable spin-dependent properties in the zigzag graphene nanoribbons. The total magnetic moment of the systems seems to have some sequential dependencies on the doping concentration along with the relative growth in the crystal lattice. It is observed that the impurity (boron or nitrogen) doping at the far-edge sites can break the electronic degeneracy in the up and down spin channels. Interestingly, in both cases spin-up electrons are found to be metallic or semi-metallic and the spin-down electrons demonstrate an insulating nature.
               
Click one of the above tabs to view related content.