LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preferential CD8 rather than CD4 T-cell response to wear particles of polyether-ether-ketone and highly cross-linked polyethylene

Photo from academic.microsoft.com

The efficacy of polyether-ether-ketone (PEEK) as a bearing material in knee components, a potential alternative to the currently used highly cross-linked polyethylene (HXLPE), has attracted a lot of attention recently.… Click to show full abstract

The efficacy of polyether-ether-ketone (PEEK) as a bearing material in knee components, a potential alternative to the currently used highly cross-linked polyethylene (HXLPE), has attracted a lot of attention recently. This study aimed to systematically assess the effect of particulate wear debris on CD4 and CD8 T-cell responses. HXLPE and PEEK particles (96% less than 5 μm) were generated by custom cryo-milling and pulverization in liquid nitrogen, and then incubated with blood collected from 25 donors. The phenotypes of the T-cells were systematically analyzed by immunostaining and flow cytometry. For the in vivo study, 0.1 mL of each particle suspension (about 1.0 × 108 wear particles) was injected into murine knee joints; the synovium and spleen were collected one week later for histological examination and immunofluorescence staining. PEEK and HXLPE particles did not induce CD4+ T-cell responses; however, CD8+ T-cells might be involved in mediating particle-induced reactions. The T-cell and inflammatory responses induced by PEEK and HXLPE particles were comparable. Further investigations into the frictional properties of materials should be performed to expand on our results.

Keywords: ether ketone; cross linked; wear particles; highly cross; polyether ether; linked polyethylene

Journal Title: RSC Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.