LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly dispersed Pd on macroporous SmMn2O5 mullite for low temperature oxidation of CO and C3H8

Photo from wikipedia

The catalytic behavior of a palladium catalyst supported on macroporous SmMn2O5 mullite (Pd/SMO-EG&M) for CO and C3H8 oxidation was measured under lean-burn conditions. Different analytical techniques including XRD, Raman, BET,… Click to show full abstract

The catalytic behavior of a palladium catalyst supported on macroporous SmMn2O5 mullite (Pd/SMO-EG&M) for CO and C3H8 oxidation was measured under lean-burn conditions. Different analytical techniques including XRD, Raman, BET, CO chemisorption, SEM, FTEM, XPS, TPD, TPR and CO + O2 pulse were undertaken to evaluate its physical and chemical properties. It was concluded that the crystal structure, morphology and specific surface area (SSA) of SmMn2O5 remained unchanged after Pd addition. The Pd/SMO-EG&M exhibited a low complete transformation temperature for CO (105 °C) and C3H8 (350 °C) oxidation. Such remarkable oxidation activity was attributed to high Pd dispersion (38.4%), which improved the reducibility and mobility of oxygen species, as revealed by TPR and TPD measurements. The high activity of oxygen species for Pd/SMO-EG&M above 250 °C accelerated the oxidation capacity as well. In a word, our study indicates that the macroporous Pd–mullite catalyst has potential applications in exhaust purification for gasoline vehicle.

Keywords: temperature; oxidation; highly dispersed; smmn2o5 mullite; c3h8; macroporous smmn2o5

Journal Title: RSC Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.