LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Ti-doping on the electrochemical performance of sodium vanadium(III) phosphate

Photo from academic.microsoft.com

Na3V2−xTix(PO4)3 (x = 0.00, 0.05, 0.10, and 0.15) was successfully synthesized by a conventional solid-state route. The XRD results show that Ti is incorporated in the lattice of Na3V2(PO4)3 and… Click to show full abstract

Na3V2−xTix(PO4)3 (x = 0.00, 0.05, 0.10, and 0.15) was successfully synthesized by a conventional solid-state route. The XRD results show that Ti is incorporated in the lattice of Na3V2(PO4)3 and the tetragonal structure has not been changed after doping. Among all the composites, the Na3V1.9Ti0.1(PO4)3 composite delivers the highest discharge capacity of 114.87 mA h g−1 at 0.1C and possesses a capacity retention of 96.23% after 20 cycles at 0.1C, demonstrating the better rate performance and cycle stability in the potential range of 2.0–3.8 V. Electrochemical impedance spectroscopy (EIS) results reveal that the Na3V1.9Ti0.1(PO4)3 composite has a lower charge transfer resistance and a higher Na-ion diffusion coefficient compared to other composites. The results indicate that Ti-doping in Na3V2(PO4)3 can effectively enhance the electrochemical performance of this tetragonal compound, especially at a high charge/discharge rate.

Keywords: effect doping; performance sodium; performance; doping electrochemical; sodium vanadium; electrochemical performance

Journal Title: RSC Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.