LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shear-banding in entangled xanthan solutions: tunable transition from sharp to broad shear-band interfaces.

We report on the smooth transition between gradient-banded velocity profiles with a sharp interface and curved velocity profiles, both resulting from strong shear-thinning dispersions of concentrated xanthan (a highly charged… Click to show full abstract

We report on the smooth transition between gradient-banded velocity profiles with a sharp interface and curved velocity profiles, both resulting from strong shear-thinning dispersions of concentrated xanthan (a highly charged poly-saccharide). Pronounced shear-banded flow, where two extended shear-bands are separated by a relatively sharp interface, is observed in a limited range of shear rates, at very low ionic strength and at a high concentration, using heterodyne light scattering to measure spatially resolved velocity profiles. The width of the interface between the coexisting shear-bands broadens to span a sizable fraction of the gap of the shear cell, either by changing the shear rate, by lowering the concentration, or by increasing the ionic strength. The broadening results in a smooth transition to highly curved velocity profiles and is connected to a disappearing flow birefringence. Thus, these experiments show that the classic shear-banding instability can give rise to highly curved velocity profiles, due to the existence of broad interfaces between the bands, with an extent of the order or larger than the cell gap width. This observation may aid to resolve the ongoing dispute concerning shear-banding of highly entangled polymeric systems, suggesting that the curved velocity profiles that have been observed in the past are in fact shear-banded states with an unusually broad interface.

Keywords: velocity profiles; transition; shear banding; velocity; curved velocity; interface

Journal Title: Soft matter
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.