LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Triplet harvesting in luminescent Cu(I) complexes by the thermally activated luminescence transition mechanism: impact of the molecular structure

Photo from wikipedia

Thermally induced transition from ordinary phosphorescence to delayed fluorescence in two kinds of luminescent copper(I) complexes is comprehensively investigated by using variable-temperature time-integrated and time-resolved photoluminescence measurements as well as… Click to show full abstract

Thermally induced transition from ordinary phosphorescence to delayed fluorescence in two kinds of luminescent copper(I) complexes is comprehensively investigated by using variable-temperature time-integrated and time-resolved photoluminescence measurements as well as model analysis. A pronounced impact of the molecular structure on exciton transfer from the lowest excited triplet spin states to the singlet spin states with higher energy is firmly demonstrated. Moreover, several fundamental photophysical processes including triplet localization, triplet harvesting, and reverse intersystem crossing are explored using theoretical models. Temperature dependence abnormalities of the emission intensity are quantitatively interpreted. Raman spectral characterization and theoretical calculations of vibronic emission transitions reveal that the molecules' thermal vibrations play an essential role in the fluorescence process.

Keywords: triplet harvesting; transition; molecular structure; triplet; impact molecular

Journal Title: Journal of Materials Chemistry C
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.