LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Access to a pair of ambiphilic phosphine-borane regioisomers by rhodium-catalyzed hydroboration.

Photo by trnavskauni from unsplash

Lewis basic substrates, such as vinylphosphines and enamines, can be problematic for transition-metal catalysed hydrofunctionalization reactions due to their propensity to ligate and deactivate transition-metal catalysts as well as form… Click to show full abstract

Lewis basic substrates, such as vinylphosphines and enamines, can be problematic for transition-metal catalysed hydrofunctionalization reactions due to their propensity to ligate and deactivate transition-metal catalysts as well as form direct Lewis adducts with reaction partners. While exploring rhodium-catalyzed hydroboration of diphenylvinylphosphine with pinacolborane, we found that a high degree of regiocontrol could be achieved without the need to diminish the Lewis basicity of the phosphine by oxidation or prior-protection. At slightly elevated temperature, a high yield of the previously unreported branched regioisomer, 1-pinacolatoborono-1-diphenylphosphinoethane, was achieved with regioselectivity greater than 10 : 1 using [Rh(COD)Cl]2 as the catalyst and AgOTf as a catalytic additive. Inversion of regioselectivity occurred at low temperature and high yield of the linear regioisomer was observed. Subsequent functionalization of the new branched phosphine-boronic ester and its coordination to rhodium were also investigated.

Keywords: access pair; phosphine; rhodium catalyzed; pair ambiphilic; catalyzed hydroboration

Journal Title: Dalton transactions
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.