LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microwave-assisted rapid preparation of hollow carbon nanospheres@TiN nanoparticles for lithium-sulfur batteries.

Photo from wikipedia

Highly conductive titanium nitride (TiN) has a strong anchoring ability for lithium polysulfides (LiPSs). However, the complexity and high cost of fabrication limit their practical applications. Herein, a typical structure… Click to show full abstract

Highly conductive titanium nitride (TiN) has a strong anchoring ability for lithium polysulfides (LiPSs). However, the complexity and high cost of fabrication limit their practical applications. Herein, a typical structure of hollow carbon nanospheres@TiN nanoparticles (HCNs@TiN) was designed and successfully synthesized via a microwave reduction method with the advantages of economy and efficiency. With unique structural and outstanding functional behavior, HCN@TiN-S hybrid electrodes display not only a high initial discharge capacity of 1097.8 mA h g-1 at 0.1C, but also excellent rate performance and cycling stability. After 200 cycles, a reversible capacity of 812.6 mA h g-1 is still retained, corresponding to 74% capacity retention of the original capacity and 0.13% decay rate per cycle, which are much better than those of HCNs-S electrodes.

Keywords: carbon nanospheres; nanospheres tin; tin nanoparticles; hollow carbon

Journal Title: Dalton transactions
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.