LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon dots produced via space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states.

Photo from wikipedia

Aggregation-induced quenching (AIQ) of emission is an obstacle for the development of carbon dots (CDots) for solid-state luminescent devices. In this work, we introduce a method to avoid AIQ and… Click to show full abstract

Aggregation-induced quenching (AIQ) of emission is an obstacle for the development of carbon dots (CDots) for solid-state luminescent devices. In this work, we introduce a method to avoid AIQ and to produce highly luminescent CDots through a space-confined vacuum heating synthesis. In the presence of CaCl2, a mixture of citric acid and urea forms an inflated foam under vacuum heating at 120 °C. Upon gradually increasing the heating temperature to 250 °C, blue emissive molecular species are first formed, and are then transformed into uniform-sized green emissive CDots through dehydration and carbonization processes taking place in the confined ultrathin spaces of the foam walls. The green luminescence of these CDots originates from conjugated sp2 domains, and these CDots exhibit a high photoluminescence quantum yield (PLQY) of 72% in ethanol solution. Remarkably, due to the existence of only one type of recombination center in these nanoparticles, AIQ does not take place in CDot-based close-packed films, which show strong emission with a PLQY of 65%. Utilizing the differences in the emission properties of vacuum heating produced CDots, CDots synthesized through microwave-assisted heating, and commercial green fluorescent organic ink (namely, excitation-dependent vs. excitation-independent emission, and different stability against photobleaching), multilevel data encryption has been demonstrated.

Keywords: confined vacuum; vacuum heating; emission; carbon dots; space confined

Journal Title: Nanoscale horizons
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.