LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D structured polypyrrole/reduced graphene oxide (PPy/rGO)-based electrode ionic soft actuators with improved actuation performance

Photo by evieshaffer from unsplash

Here, we report a facile approach to fabricate flexible 3D structured polypyrrole/reduced graphene oxide (PPy/rGO) electrodes for Nafion-based ionic soft actuators. rGO nanosheets were homogeneously attached into the PPy framework… Click to show full abstract

Here, we report a facile approach to fabricate flexible 3D structured polypyrrole/reduced graphene oxide (PPy/rGO) electrodes for Nafion-based ionic soft actuators. rGO nanosheets were homogeneously attached into the PPy framework using the electropolymerization of PPy/rGO nanocomposites on both faces of carbon nanoparticle/MWCNT (CA)-coated Nafion membranes. This improved the electron and ion transport processes, which are prerequisites for the actuation performances of ionic soft actuators. The prepared 3D PPy/rGO actuators provided a significantly larger active area, faster ion transfer ability, higher mass transfer efficiency and excellent capacitive characteristics. The surface morphology and porosity of the electrode layers were altered by changing the rGO content of the electrodes, as confirmed by SEM images and electrochemical impedance spectroscopy (EIS) measurements. The capacitive characteristics and ion exchange capacity (IEC) of the prepared actuators were considerably improved by adding up to 3 wt% rGO. This resulted in a significant improvement of the electro-mechanical energy efficiency (∼2 times) and the bending deformation (∼5 times) of the 3D PPy/rGO actuators compared to actuators prepared using a similar method containing no rGO. The presented processing strategy for fabricating metal-free soft ionic actuators provides opportunities toward developing a new class of 3D structured soft robotics for medicinal and industrial applications.

Keywords: soft actuators; ppy rgo; rgo; structured polypyrrole; polypyrrole reduced; ionic soft

Journal Title: New Journal of Chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.