LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Defect-induced betavoltaic enhancement in black titania nanotube arrays.

Utilizing high-energy beta particles emitted from radioisotopes for long-lifetime betavoltaic cells is a great challenge due to their low energy conversion efficiency (ECE). Here we report a betavoltaic cell fabricated… Click to show full abstract

Utilizing high-energy beta particles emitted from radioisotopes for long-lifetime betavoltaic cells is a great challenge due to their low energy conversion efficiency (ECE). Here we report a betavoltaic cell fabricated using black titania nanotube arrays (TiO2 NTAs) by electrochemical anodization and Ar-annealing techniques. The obtained samples show enhanced electrical conductivity as well as Vis-NIR light absorption by the introduction of oxygen vacancy (OV) and Ti3+ defects in reduced TiO2-x NTAs. A 20 mCi63 Ni source was assembled into TiO2 NTAs to form a sandwich-type betavoltaic cell. By I-V measurements, the Ar-annealed TiO2 NTAs at 650 °C exhibited a maximum ECE of 3.65% with Voc = 1.13 V, Jsc = 103.3 nA cm-2, and Pmax = 37 nW cm-2. In comparison with air-annealed TiO2 NTAs, the enhancement of the betavoltaic effect in reduced TiO2-x NTAs can be attributed to the suppression of e-h recombination induced by the generation of OV and Ti3+ defects, serving as electron donors as well as electron traps that not only contribute to the increase of electrical conductance, but also facilitate the charge carrier separation.

Keywords: tio2 ntas; titania nanotube; betavoltaic; nanotube arrays; black titania

Journal Title: Nanoscale
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.