LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controllable formation of meso- and macropores within metal-organic framework crystals via a citric acid modulator.

Photo by sharonmccutcheon from unsplash

Citric acid (CA) is introduced to modulate the synthesis of octahedral HKUST-1 (also known as Cu3(BTC)2, BTC = benzene-1,3,5-tricarboxylate) particles with hierarchical micro, meso- and/or macropores (noted as HP-HKUST-1 particles)… Click to show full abstract

Citric acid (CA) is introduced to modulate the synthesis of octahedral HKUST-1 (also known as Cu3(BTC)2, BTC = benzene-1,3,5-tricarboxylate) particles with hierarchical micro, meso- and/or macropores (noted as HP-HKUST-1 particles) under mild conditions. The particle size of the resultant product could be tuned from 300 nm to 2.4 μm by varying the amount of CA added, solvents, reaction time and so on. The intrinsic microporous structure of HKUST-1 is maintained despite the strong chelation capability of CA towards Cu2+ while the larger pores' size is in the range of 30 to 100 nm. The possible formation mechanism of these octahedral HP-HKUST-1 particles is proposed on the basis of our systematic investigations. The resulting micrometer HP-HKUST-1 particle is employed to encapsulate phosphomolybdic acid hydrate (HPMo), a catalyst for the methanolysis of styrene oxide. After encapsulation, a superior catalytic activity with a high conversion rate (99.6%) is achieved when the reaction is carried out at 40 °C for 20 min.

Keywords: citric acid; meso macropores; hkust; formation

Journal Title: Nanoscale
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.