DNA origami is one of the most effective tools for bottom-up construction of novel objects and devices at the nanometer-scale. However, many applications require larger structures than can be obtained… Click to show full abstract
DNA origami is one of the most effective tools for bottom-up construction of novel objects and devices at the nanometer-scale. However, many applications require larger structures than can be obtained with the conventional single-stranded scaffold, typically 7249 nucleotides. Here, we address this limitation by developing custom-made single-stranded scaffolds that bind pre-assembled origami tiles and induce their one-dimensional organization in high yields. Our synthetic method allows the conversion of multiple repetitive and unique sequences into correctly assembled, large backbones, and to finely tune the position and frequency of each building block. Granted with these regions, three and five origami tiles were successfully arranged in 1-D with the aid of one or two scaffolds, forming a nano-"railroad track". This new method increases length scale in DNA origami without increasing cost and complexity, and is anticipated to increase the yield of other approaches aiming to assemble large origami structures.
               
Click one of the above tabs to view related content.