LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A water-soluble, upconverting Sr2Yb0.3Gd0.7F7:Er3+/Tm3+@PSIoAm bio-probe for in vivo trimodality imaging.

Photo by a2eorigins from unsplash

Multi-modality in vivo bioimaging has great renown for offering more comprehensive information in medical diagnosis and research. Incorporating different bioimaging capabilities into one biocompatible nanoprobe requires an elegant structural design.… Click to show full abstract

Multi-modality in vivo bioimaging has great renown for offering more comprehensive information in medical diagnosis and research. Incorporating different bioimaging capabilities into one biocompatible nanoprobe requires an elegant structural design. Considering optical and magnetic properties, X-ray absorption ability, and clinical safety, we prepared a water-soluble and upconverting PSIoAm-modified Sr2Yb0.3Gd0.7F7:Er3+/Tm3+ bio-probe that not only had high photostability and excellent cell membrane permeability, but could also distinguish the four types of cancer cells and normal cells tested within the scope of our study. What's more, it could realize the in vivo trimodality imaging of upconversion fluorescence, X-ray computed tomography and magnetic resonance. The histological analysis of visceral sections further demonstrated that the multifunctional bio-probe was highly safe, which could be applied to clinical diagnosis.

Keywords: soluble upconverting; bio probe; water soluble; bio; sr2yb0 3gd0

Journal Title: Nanoscale
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.