LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ternary organic solar cells with a phase-modulated surface distribution via the addition of a small molecular luminescent dye to obtain a high efficiency over 10.5.

Photo from wikipedia

Incorporation of a ternary organic component is an effective strategy to enhance the performance of bulk heterojunction (BHJ) organic solar cells (OSCs). In this study, a small molecule luminescent dye,… Click to show full abstract

Incorporation of a ternary organic component is an effective strategy to enhance the performance of bulk heterojunction (BHJ) organic solar cells (OSCs). In this study, a small molecule luminescent dye, C545T, was first doped into blends of PTB7-Th/PC71BM and PTB7/PC71BM as a third component to fabricate ternary OSCs. It is demonstrated that C545T can disrupt the severe vertical distribution in the binary blend and effectively modulate the novel surface chemical configuration by improving the self-assembly process of the polymer donor, as a result of the good miscibility among the active layer materials and the π-π interactions between PC71BM and C545T. The obtained homogeneously bicontinuous BHJ with numerous interpenetrating nanofibers optimizes the domain size of exciton diffusion and the length of charge transfer. The energy transfer between C545T and polymers changes the transmission path of photo-generated excitons, which together improve the exciton dissociation process and reduce the recombination loss. Champion power conversion efficiencies (PCEs) of 10.69% and 9.42% were achieved by the ternary blends of PTB7-Th/C545T/PC71BM and PTB7/C545T/PC71BM, respectively, which correspond to a nearly 20% enhancement over their binary counterparts.

Keywords: organic solar; luminescent dye; ternary organic; solar cells

Journal Title: Nanoscale
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.