LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unusual strain-dependent thermal conductivity modulation of silver nanoflower-polyurethane fibers.

Photo by rabinam from unsplash

Thermal management of stretchable and wearable electronic devices is an important issue in enhancing performance, reliability, and human thermal comfort. Here, we constructed a unique experimental setup which investigated the… Click to show full abstract

Thermal management of stretchable and wearable electronic devices is an important issue in enhancing performance, reliability, and human thermal comfort. Here, we constructed a unique experimental setup which investigated the strain-dependent thermal conductivity. The thermal conductivity of flower-shaped silver nanoparticle (silver nanoflower)-polyurethane (Ag-PU) composite fibers was systematically investigated as a function of strain. The strain-dependent temperature distribution of the Joule-heated fiber was measured using an infrared camera, and the thermal conductivity was obtained from the 1-dimensional Fourier's conduction model. There was a monotonic decrease in both lattice and electronic thermal conductivity with stretching at 25 °C. However, there was an initial increase in lattice and total thermal conductivity in the low strain region (<10%), when the fiber was stretched at 45 °C, although the electronic thermal conductivity decreased monotonically. The softening of the polymer at increased temperatures enhanced Poisson's ratio. Resultantly, the fiber cross-sectional area and radial-direction inter-particle distance between silver nanoflowers decreased. This could increase the thermal transport in conductive fibers by modulating the interfaces between silver nanoflowers and polyurethane. A further stretching decreased the lattice thermal conductivity due to the significantly increased axial distance between silver nanoflowers and the decreased filler fraction. The weft-knitted fabric also demonstrated an increased thermal conductance in the low strain region (≤30%) at 45 °C.

Keywords: strain dependent; thermal conductivity; dependent thermal; conductivity; silver

Journal Title: Nanoscale
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.