Gap-mode nanostructures offer a reliable, scalable and controllable Raman substrate with high signal enhancement, and they are widely used in surface-enhanced Raman spectroscopy. Heterogeneous gap-mode structures composed of different types… Click to show full abstract
Gap-mode nanostructures offer a reliable, scalable and controllable Raman substrate with high signal enhancement, and they are widely used in surface-enhanced Raman spectroscopy. Heterogeneous gap-mode structures composed of different types of nanoparticles with the underlying substrate have been studied only in terms of understanding the electromagnetic field enhancement mechanism up to now, just by focusing on the role of hot spot as enhancing the Raman signal itself. In this study, gold and platinum nanoparticle-based heterogeneous gap-mode structures were fabricated on gold surface, and used to evaluate minute changes in the surface charged state (surface potential) of the nanoparticle interacting with different organic vapors. By monitoring the surface-enhanced Raman signal change of isonitrile probes in the hot spot, it was revealed that gold and platinum nanoparticles show opposite directions of charge transfer over the same formaldehyde treatment. This strategy offers a new way to evaluate the charge transfer phenomenon between organic vapor and nanoparticles, which is especially important in catalytic application, using conventional surface-enhanced Raman spectroscopy.
               
Click one of the above tabs to view related content.