LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds.

Photo from wikipedia

Control over the formation and fluorescence properties of nitrogen vacancy (NV) centers in nanodiamonds (NDs) is an important factor for their use in medical and sensor applications. However, reports providing… Click to show full abstract

Control over the formation and fluorescence properties of nitrogen vacancy (NV) centers in nanodiamonds (NDs) is an important factor for their use in medical and sensor applications. However, reports providing a deep understanding of the potential factors influencing these properties are rare and focus only on a few influencing factors. The current contribution targets this issue and we report a comprehensive study of the fluorescence properties of NVs in nanodiamonds as a function of electron irradiation fluence and surface termination. Here we show that process parameters such as defect center interactions, in particular, different nitrogen defects and radiation induced lattice defects, as well as surface functionalities have a strong influence on the fluorescence intensity, fluorescence lifetime and the charge state ratio of the NV centers. By employing a time-correlated single photon counting approach we also established a method for fast macroscopic monitoring of the fluorescence properties of ND samples. We found that the fluorescence properties of NV centers may be controlled or even tuned depending upon the radiation treatment, annealing, and surface termination.

Keywords: nitrogen vacancy; vacancy centers; fluorescence; properties nitrogen; fluorescence properties; centers nanodiamonds

Journal Title: Nanoscale
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.