LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-sensitive graphene-bismuth telluride nano-wire hybrids for infrared detection.

Photo by drew_hays from unsplash

The myriad technological applications of infrared radiation sensors make the search for ultra-sensitive detectors extremely crucial. Materials such as bismuth telluride (Bi2Te3), having a small bulk band gap of 0.17… Click to show full abstract

The myriad technological applications of infrared radiation sensors make the search for ultra-sensitive detectors extremely crucial. Materials such as bismuth telluride (Bi2Te3), having a small bulk band gap of 0.17 eV, are ideal infrared detectors. However, due to the high recombination rate of photo-generated charge carriers in the bulk, the electrical response under optical illumination is typically very weak in these materials. We have circumnavigated this by sensitizing graphene with Bi2Te3 nano-wires. These hybrid devices show an ultra-high sensitivity of ∼106 A W-1, under incident electromagnetic radiation from 940 nm to 1720 nm. The theoretical limit of the noise equivalent power and specific detectivity in these devices are ∼10-18 W Hz-1/2 and ∼1011 Jones respectively, which are comparable to those of some of the best known detectors.

Keywords: telluride nano; bismuth telluride; graphene bismuth; sensitive graphene; ultra sensitive

Journal Title: Nanoscale
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.