LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Free-standing graphene/bismuth vanadate monolith composite as a binder-free electrode for symmetrical supercapacitors

Photo by jakaylatoney from unsplash

Preparation of new types of electrode material is of great importance to supercapacitors. Herein, a graphene/bismuth vanadate (GR/BiVO4) free-standing monolith composite has been prepared via a hydrothermal process. Flexible GR… Click to show full abstract

Preparation of new types of electrode material is of great importance to supercapacitors. Herein, a graphene/bismuth vanadate (GR/BiVO4) free-standing monolith composite has been prepared via a hydrothermal process. Flexible GR sheets act as a skeleton in the GR/BiVO4 monolith composites. When used as a binder-free electrode in a three-electrode system, the GR/BiVO4 composite electrode can provide an impressive specific capacitance of 479 F g−1 in a potential window of −1.1 to 0.7 V vs. SCE at a current density of 5 A g−1. A symmetrical supercapacitor cell which can be reversibly charged–discharged at a cell voltage of 1.6 V has been assembled based on this GR/BiVO4 monolith composite. The symmetrical capacitor can deliver an energy density of 45.69 W h kg−1 at a power density of 800 W kg−1. Moreover, it ensures rapid energy delivery of 10.75 W h kg−1 with a power density of 40 kW kg−1.

Keywords: free standing; electrode; bismuth vanadate; monolith; monolith composite; graphene bismuth

Journal Title: RSC Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.