LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Temperature independence of piezoelectric properties for high-performance BiFeO3–BaTiO3 lead-free piezoelectric ceramics up to 300 °C

Photo from wikipedia

The temperature-dependence behaviors of ferroelectric, piezoelectric, kp and electrical-field-induced strain were carefully evaluated for high-performance BiFeO3–0.3BaTiO3 (BF–0.3BT) ceramics. There results indicate, combined with Rayleigh analysis and temperature-dependence XRD and PFM,… Click to show full abstract

The temperature-dependence behaviors of ferroelectric, piezoelectric, kp and electrical-field-induced strain were carefully evaluated for high-performance BiFeO3–0.3BaTiO3 (BF–0.3BT) ceramics. There results indicate, combined with Rayleigh analysis and temperature-dependence XRD and PFM, that the increase of strain and large signal with increasing the temperature from room temperature to 180 °C is related to the joint effect of intrinsic contribution (lattice expansion) and extrinsic contribution (domain switching). With further increasing the temperature to 300 °C, the large signal d33 and electrical-field-induced strain mildly decrease because of the increase of conductivity for BF–0.3BT ceramics. However, different from strain and large signal the small signal d33(E0) and kp exhibit excellent temperature stability behavior as the temperature increases from room temperature to 300 °C.

Keywords: performance bifeo3; temperature; large signal; temperature independence; high performance

Journal Title: RSC Advances
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.