LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioinspired microstructures of chitosan hydrogel provide enhanced wear protection.

Photo by vlisidis from unsplash

We describe the fabrication of physical chitosan hydrogels exhibiting a layered structure. This bilayered structure, as shown by SEM and confocal microscopy, is composed of a thin dense superficial zone… Click to show full abstract

We describe the fabrication of physical chitosan hydrogels exhibiting a layered structure. This bilayered structure, as shown by SEM and confocal microscopy, is composed of a thin dense superficial zone (SZ), covering a deeper zone (DZ) containing microchannels orientated perpendicularly to the SZ. We show that such structure favors diffusion of macromolecules within the hydrogel matrix up to a critical pressure, σc, above which channels were constricted. Moreover, we found that the SZ provided a higher wear resistance than the DZ which was severely damaged at a pressure equal to the elastic modulus of the gel. The coefficient of friction (CoF) of the SZ remained independent of the applied load with μSZ = 0.38 ± 0.02, while CoF measured at DZ exhibited two regimes: an initial CoF close to the value found on the SZ, and a CoF that decreased to μDZ = 0.18 ± 0.01 at pressures higher than the critical pressure σc. Overall, our results show that internal structuring is a promising avenue in controlling and improving the wear resistance of soft materials such as hydrogels.

Keywords: enhanced wear; provide enhanced; chitosan hydrogel; microstructures chitosan; hydrogel provide; bioinspired microstructures

Journal Title: Soft matter
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.