Binary superlattices constructed from nano- or micron-sized colloidal particles have a wide variety of applications, including the design of advanced materials. Self-assembly of such crystals from their constituent colloids can… Click to show full abstract
Binary superlattices constructed from nano- or micron-sized colloidal particles have a wide variety of applications, including the design of advanced materials. Self-assembly of such crystals from their constituent colloids can be achieved in practice by, among other means, the functionalization of colloid surfaces with single-stranded DNA sequences. However, when driven by DNA, this assembly is traditionally premised on the pairwise interaction between a single DNA sequence and its complement, and often relies on particle size asymmetry to entropically control the crystalline arrangement of its constituents. The recently proposed "multi-flavoring" motif for DNA functionalization, wherein multiple distinct strands of DNA are grafted in different ratios to different colloids, can be used to experimentally realize a binary mixture in which all pairwise interactions are independently controllable. In this work, we use various computational methods, including molecular dynamics and Wang-Landau Monte Carlo simulations, to study a multi-flavored binary system of micron-sized DNA-functionalized particles modeled implicitly by Fermi-Jagla pairwise interactions. We show how self-assembly of such systems can be controlled in a purely enthalpic manner, and by tuning only the interactions between like particles, demonstrate assembly into various morphologies. Although polymorphism is present over a wide range of pairwise interaction strengths, we show that careful selection of interactions can lead to the generation of pure compositionally ordered crystals. Additionally, we show how the crystal composition changes with the like-pair interaction strengths, and how the solution stoichiometry affects the assembled structures.
               
Click one of the above tabs to view related content.