LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Local dynamics in supramolecular polymer networks probed by magnetic particle nanorheology.

Photo from wikipedia

Transient supramolecular polymer networks are promising candidates as soft self-healing or stimuli-sensitive materials. In this paper, we employ a novel nanorheological approach, magnetic particle nanorheology (MPN), in order to better… Click to show full abstract

Transient supramolecular polymer networks are promising candidates as soft self-healing or stimuli-sensitive materials. In this paper, we employ a novel nanorheological approach, magnetic particle nanorheology (MPN), in order to better understand the local dynamic properties of model supramolecular networks from a molecular point of view. Hence, the bond strength between four-arm star-shaped polyethylene glycol (PEG) functionalized at the four extremities with terpyridine ligands is tuned by implementing different metal ions with variable complexation affinities for the ligand. We show that MNP allows for the evaluation of the strength and connectivity of the polymer networks by the estimation of relaxation times, mesh size, and also the viscoelastic properties of these materials. These results are compared and complemented to former outcomes on these systems that were obtained by macroscopic analytical methods. A clear dependence between the strength of the metal-ligand complex and the local dynamics of the polymeric network is observed by the nanorheological approach, which is in good agreement with previous predictions related to the complex formation constants.

Keywords: supramolecular polymer; magnetic particle; polymer networks; local dynamics; particle nanorheology; polymer

Journal Title: Soft matter
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.