LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biaxial nematics of hard cuboids in an external field.

Photo from wikipedia

By computer simulation, we model the phase behaviour of colloidal suspensions of board-like particles under the effect of an external field and assess the still disputed occurrence of the biaxial… Click to show full abstract

By computer simulation, we model the phase behaviour of colloidal suspensions of board-like particles under the effect of an external field and assess the still disputed occurrence of the biaxial nematic (NB) liquid crystal phase. The external field promotes the rearrangement of the initial isotropic (I) or uniaxial nematic (NU) phase and the formation of the NB phase. In particular, very weak field strengths are sufficient to spark a direct I-NB or NU-NB phase transition at the self-dual shape, where prolate and oblate particle geometries fuse into one. By contrast, forming the NB phase at any other geometry requires stronger fields and thus reduces the energy efficiency of the phase transformation. Our simulation results show that self-dual shaped board-like particles with moderate anisotropy are able to form NB liquid crystals under the effect of a surprisingly weak external stimulus and suggest a path to exploit low-energy uniaxial-to-biaxial order switching.

Keywords: phase; field; biaxial nematics; external field; hard cuboids; nematics hard

Journal Title: Soft matter
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.