LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A non-conjugated polyethylenimine copolymer-based unorthodox nanoprobe for bioimaging and related mechanism exploration.

Photo by gabriel_17 from unsplash

Unconventional non-conjugated photoluminescent polymers have attracted increasing attention in bioimaging application, however their nonclassical photoluminescence mechanisms remain largely unclear. Herein, an amphiphilic copolymer polyethyleneimine-poly(d,l-lactide) (PEI-PDLLA) was synthesized and the obtained… Click to show full abstract

Unconventional non-conjugated photoluminescent polymers have attracted increasing attention in bioimaging application, however their nonclassical photoluminescence mechanisms remain largely unclear. Herein, an amphiphilic copolymer polyethyleneimine-poly(d,l-lactide) (PEI-PDLLA) was synthesized and the obtained PEI-PDLLA copolymer exhibited intrinsic visible blue luminescence in the solid and concentrated solution states under 365 nm UV light irradiation. Using a computational assay approach, we investigated the unconventional photoluminescence mechanism of PEI-PDLLA. The results revealed that such photoluminescence should be related to the "clustered heteroatom chromophores" formed by through-space electronic interactions of N-heteroatoms in PEI. The copolymers can function as a fluorescent nanoprobe (PEI-PDLLA NPs) via a facile nanoprecipitation method and the self-assembly mechanism of PEI-PDLLA NPs was also investigated in-depth by molecular dynamics simulation. Intriguingly, the PEI-PDLLA NPs exhibited a remarkable excitation-dependent multi-wavelength emission characteristic, which was promising in acquiring a high precision imaging effect. Moreover, in contrast with conventional organic dyes with aggregation-caused quenching (ACQ), the fluorescence intensity of the PEI-PDLLA NPs was enhanced with increasing solution concentration. Furthermore, their applications in bioimaging indicated that PEI-PDLLA NPs could be utilized as a lysosome-specific and tumor-targeted nanoprobe with excellent photostability and good biocompatibility.

Keywords: pei pdlla; pdlla; mechanism; non conjugated; pdlla nps; copolymer

Journal Title: Biomaterials science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.