LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A fluorescent probe for sequential sensing of MnO4- and Cr2O72- ions in aqueous medium based on a UCNS/TMB nanosystem.

Photo by alice_deny from unsplash

This paper reports the successful design of an UC fluorescence nanosystem for distinguishable and sequential detection of MnO4- and Cr2O72- based on the inner filter effect (IFE) between Gd2O3:Yb,Er upconversion… Click to show full abstract

This paper reports the successful design of an UC fluorescence nanosystem for distinguishable and sequential detection of MnO4- and Cr2O72- based on the inner filter effect (IFE) between Gd2O3:Yb,Er upconversion nanospheres (UCNS) and 3,3',5,5'-tetramethylbenzidine (TMB). The detection of MnO4- was realized by a stoichiometric oxidation reaction between TMB and Mn(vii), which resulted in quenching of the upconversion luminescence (UCL) by the blue product through IFE. The assay of Cr2O72-, in contrast, was based on the formation of complexes and the consumption of the oxidation product of the previous reaction. The sensing of MnO4- did not interfere with that of Cr2O72- when Pb2+ was added as a masking agent. This provides a new strategy for sensitive and selective detection of MnO4- and Cr2O72-. The detection of MnO4- showed not only a low LOD of 0.243 μM but also high selectivity over other possible interfering ions. The sensitivity assay of MnO4- can be performed in the linear range of 1.85 to 69 μM. An excellent linear relationship was also found in the sensing of Cr2O72-, with a linear range of 18.3 to 250 μM and a LOD of 2.95 μM. The selectivity towards Cr2O72- was also proved to be good. Based on these properties, the UCNS-TMB nanoplatform is a potential chemosensor for both MnO4- and Cr2O72- ions in practical assays for waste water.

Keywords: cr2o72; mno4 cr2o72; ucns tmb; sensing mno4; detection mno4; mno4

Journal Title: Dalton transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.