LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective loading of cisplatin into a nanoscale UiO-66 metal-organic framework with preformed defects.

Defects within the nanoscale UiO-66 metal-organic framework (MOF) are created to lock a hybrid phosphonoacetate ligand through Zr-O-P linkages, leaving the carboxyl group free to anchor cisplatin prodrug cis, cis,… Click to show full abstract

Defects within the nanoscale UiO-66 metal-organic framework (MOF) are created to lock a hybrid phosphonoacetate ligand through Zr-O-P linkages, leaving the carboxyl group free to anchor cisplatin prodrug cis, cis, trans-[Pt(NH3)2Cl2(OH)2]. A drug loading of 256.5 mg g-1 (25.7 wt% based on cisplatin) was achieved with a Zr6 : Pt : P ratio of 1.5 : 1 : 1, which surpasses defect-free UiO-66 and several other MOF carriers. This framework exhibited a burst release of its payload in PBS solution in the first 2 h, releasing 71% of the drug, including a 50% payload release in less than 1 h. This work demonstrates that MOF defects can be intentionally engineered to achieve a high drug loading, and serves as an alternative to drug encapsulation using the pore void and through the association of the functionalized ligand.

Keywords: cisplatin; metal organic; nanoscale uio; uio metal; organic framework

Journal Title: Dalton transactions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.